Module

ModelProperties

Methods

# inner add(model, layer) → {Void}

Adds a layer instance on top of the layer stack.
Parameters:
Name Type Description
model SequentialModel Sequential model to add layer on.
layer Layer Layer instance.

View Source

model.add(layer)
Void

# inner compile(model, optimizer, loss, metrics) → {Void}

Configures and prepares the model for training and evaluation.
Parameters:
Name Type Description
model LayersModel The model compile.
optimizer String An instance of tf.train.Optimizer or a string name for an Optimizer.
loss String | Array.<String> (string|string[]|{[outputName: string]: string}|LossOrMetricFn| LossOrMetricFn[]|{[outputName: string]: LossOrMetricFn}) Object function(s) or name(s) of object function(s). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or an Array of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.
metrics String (string|LossOrMetricFn|Array| {[outputName: string]: string | LossOrMetricFn}) List of metrics to be evaluated by the model during training and testing. Typically you will use metrics=['accuracy']. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary.

View Source

model.compile({optimizer, loss, metrics})
Void

# inner fit(model, x, y, epochs, batchSize) → {Promise}

Trains the model for a fixed number of epochs (iterations on a dataset).
Parameters:
Name Type Description
model LayersModel The model compile.
x Tensor An tf.Tensor of training data, or an array of tf.Tensors if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to tf.Tensors.
y Tensor tf.Tensor of target (label) data, or an array of tf.Tensors if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to tf.Tensors.
epochs Number Integer number of times to iterate over the training data arrays.
batchSize Number Number of samples per gradient update. If unspecified, it will default to 32.

View Source

await model.fit(xs, ys, {epochs, batchSize})
Promise

# inner predict(model, tensor) → {Tensor}

Execute the inference for the input tensors.
Parameters:
Name Type Description
model LayersModel The model compile.
tensor Tensor The input data, as a Tensor, or an Array of tf.Tensors if the model has multiple inputs.

View Source

model.predict(tensor)
Tensor