Module

BasicLayer

Methods

# inner denseLayer(units, inputShape, activation) → {Dense}

Creates a dense (fully connected) layer.
Parameters:
Name Type Description
units Number Positive integer, dimensionality of the output space.
inputShape Array.<Number> | null If defined, will be used to create an input layer to insert before this layer. If both inputShape and batchInputShape are defined, batchInputShape will be used. This argument is only applicable to input layers (the first layer of a model).
activation String ('elu'|'hardSigmoid'|'linear'|'relu'|'relu6'| 'selu'|'sigmoid'|'softmax'|'softplus'|'softsign'|'tanh'|'swish'|'mish'|'gelu'|'gelu_new') Activation function to use.

View Source

tf.layers.dense({ units, inputShape, activation}).
Dense

# inner dropoutLAyer(rate) → {Flatten}

Applies dropout to the input.
Parameters:
Name Type Description
rate Number Float between 0 and 1. Fraction of the input units to drop.

View Source

tf.layers.dropout({rate}).
Flatten

# inner embeddingLayer(inputDime, outputDim, inputLength, trainable) → {Dense}

Maps positive integers (indices) into dense vectors of fixed size.
Parameters:
Name Type Description
inputDime Number Integer > 0. Size of the vocabulary, i.e. maximum integer index + 1.
outputDim Number Integer >= 0. Dimension of the dense embedding.
inputLength Number | Array.<Number> Length of input sequences, when it is constant.
trainable Boolean Whether the weights of this layer are updatable by fit. Defaults to true.

View Source

tf.layers.embedding({ inputDim, outputDim, inputLength, trainable })
Dense

# inner flattenLayer(inputShape) → {Flatten}

Flattens the input. Does not affect the batch size.
Parameters:
Name Type Description
inputShape Number If defined, will be used to create an input layer to insert before this layer. If both inputShape and batchInputShape are defined, batchInputShape will be used. This argument is only applicable to input layers (the first layer of a model).

View Source

tf.layers.flatten({inputShape}).
Flatten